Identification of CMS as a cytosolic adaptor of the human pTalpha chain involved in pre-TCR function.

نویسندگان

  • María N Navarro
  • Gretel Nusspaumer
  • Patricia Fuentes
  • Sara González-García
  • Juan Alcain
  • María L Toribio
چکیده

The T-cell receptor beta (TCRbeta)/pre-TCRalpha (pTalpha) pre-TCR complex (pre-TCR) signals the expansion and differentiation of de-veloping thymocytes. Functional pro-perties of the pre-TCR rely on its unique pTalpha chain, which suggests the participation of specific intracellular adaptors. However, pTalpha-interacting molecules remain unknown. Here, we identified a polyproline-arginine sequence in the human pTalpha cytoplasmic tail that interacted in vitro with SH3 domains of the CIN85/CMS family of adaptors, and mediated the recruitment of multiprotein complexes involving all (CMS, CIN85, and CD2BP3) members. Supporting the physiologic relevance of this interaction, we found that 1 such adaptor, CMS, interacted in vivo with human pTalpha, and its expression was selectively up-regulated during human thymopoiesis in pre-TCR-activated thymocytes. Upon activation, pre-TCR clustering was induced, and CMS and polymerized actin were simultaneously recruited to the pre-TCR activation site. CMS also associated via its C-terminal region to the actin cytoskeleton in the endocytic compartment, where it colocalized with internalized pTalpha in traffic to lysosomal degradation. Notably, deletion of the pTalpha CIN85/CMS-binding motif impaired pre-TCR-mediated Ca(2+) mobilization and NFAT transcriptional activity, and precluded activation induced by overexpression of a CMS-SH3 N-terminal mutant. These results provide the first molecular evidence for a pTalpha intracellular adaptor involved in pre-TCR function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Endoplasmic Reticulum Retention Function for the Cytoplasmic Tail of the Human Pre–T Cell Receptor (Tcr) α Chain

The pre-T cell receptor (TCR), which consists of a TCR-beta chain paired with pre-TCR-alpha (pTalpha) and associated with CD3/zeta components, is a critical regulator of T cell development. For unknown reasons, extremely low pre-TCR levels reach the plasma membrane of pre-T cells. By transfecting chimeric TCR-alpha-pTalpha proteins into pre-T and mature T cell lines, we show here that the low s...

متن کامل

The Biological Activity of Natural and Mutant Ptα Alleles

beta selection is a major checkpoint in early thymocyte differentiation, mediated by successful expression of the pre-T cell receptor (TCR) comprising the TCRbeta chain, CD3 proteins, and a surrogate TCRalpha chain, pTalpha. The mechanism of action of the pre-TCR is unresolved. In humans and mice, the pTalpha gene encodes two RNAs, pTalpha(a), and a substantially truncated form, pTalpha(b). Thi...

متن کامل

Identification of a Late Stage of Small Noncycling pTα−  Pre-T Cells as Immediate Precursors of T Cell Receptor α/β+  Thymocytes

During thymocyte development, progression from T cell receptor (TCR)beta to TCRalpha rearrangement is mediated by a CD3-associated pre-TCR composed of the TCRbeta chain paired with pre-TCRalpha (pTalpha). A major issue is how surface expression of the pre-TCR is regulated during normal thymocyte development to control transition through this checkpoint. Here, we show that developmental expressi...

متن کامل

Allelic Exclusion in pTα-deficient Mice: No Evidence for Cell Surface Expression of Two T Cell Receptor (TCR)-β Chains, but Less Efficient Inhibition of Endogeneous Vβ→ (D)Jβ Rearrangements in the Presence of a Functional TCR-β Transgene

Although individual T lymphocytes have the potential to generate two distinct T cell receptor (TCR)-beta chains, they usually express only one allele, a phenomenon termed allelic exclusion. Expression of a functional TCR-beta chain during early T cell development leads to the formation of a pre-T cell receptor (pre-TCR) complex and, at the same developmental stage, arrest of further TCR-beta re...

متن کامل

Notch3 and the Notch3-upregulated RNA-binding protein HuD regulate Ikaros alternative splicing.

Constitutive activation of the transmembrane receptor, Notch3, and loss of function of the hematopoietic transcription repressor, Ikaros (IK), play direct roles in T-cell differentiation and leukemogenesis that are dependent on pre-T-cell receptor (pre-TCR) signaling. We demonstrate the occurrence of crosstalk between Notch3 and IK that results in transcriptional regulation of the gene encoding...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 110 13  شماره 

صفحات  -

تاریخ انتشار 2007